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Many-electron theory of atoms and molecules starts out from a spin-independent Hamil-
tonian H . In principle, therefore, one can solve for simultaneous eigenfunctions Ψ of H
and the spin operators S2 and Sz. The fullest possible factorization into space and spin
parts is here exploited to construct the spinless second-order density matrix Γ, and hence
also the first-order density matrix. After invoking orthonormality of spin functions, and
independently of the total number of electrons, the factorized form of Ψ is shown to lead to
Γ as a sum of only two terms for S = 0, a maximum of three terms for S = 1/2 and four
terms for S > 1. These individual terms are characterized by their permutational symmetry.
As an example, the ground state of the Be atom is discussed.

1. Introduction

While density functional theory (DFT) is nowadays a widely used approach to
many-electron problems in both molecules and condensed phases, certain major issues
remain unresolved. In the “hybrid” treatment using one-electron orbitals (themselves
being functionals of the ground-state electron density ρ(r)), pioneered by Slater [16]
and formally completed by Kohn and Sham [9], an essential ingredient in present
calculational procedures is the exchange-correlation potential vxc[r]. Without approx-
imation, and free from the conventional functional derivative

vxc(r) =
δExc[ρ]
δρ(r)

, (1.1)

where Exc[ρ] is the, as yet unknown, exchange-correlation energy functional, Holas and
March [5,6] have recently expressed vxc(r) quite explicitly in terms of low-order density
matrices of spinless form. But these are subject to the so-called N -representability
problem, present in the pioneering work of Mayer [11] and reviewed by Coleman [1]. It
should therefore, in the light of refs. [1,5,6,11], occasion little surprise that while DFT
has a variational basis, current approximations to functionals, and hence to densities
ρ(r), frequently can go below the exact ground-state energy of the atom or molecule,
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say, under consideration. This is, of course, a serious matter, as it means that, at
some point which is often difficult to isolate, one has violated, to some degree, the
antisymmetry requirement on a many-Fermion wave function. Thus, energy, termed
“correlation”, is at least to a certain extent, then being gained from an admixture of,
say, a Bose wave function component in a Fermion problem.

A second different, but related, area, which will be a focal point below, is that
calculations on atoms or molecules at the level of the many-electron Schrödinger
equation start out from an assumed spin-independent Hamiltonian H . This implies,
in particular, that the ground-state many-electron wave function is a simultaneous
eigenfunction of H , S2 and Sz . Of course, a whole body of work exists, such as
is reviewed in the book by Pauncz [15], on the construction of spin eigenfunctions.
But it is fair to say that, to date, this branch of atomic and molecular theory has only
affected DFT practice peripherally.

In section 2 below, therefore, we shall draw on work, set out for example in the
book by Wigner [17], in which the fullest possible factorization of the many-electron
ground-state wave function into space and spin parts is carried out. This will then be
used to construct specifically the spinless second-order density matrix Γ. Hence the
spinless first-order density matrix γ will be derived.

2. Fullest possible factorization of ground-state many-electron wave function
into space and spin contributions

Here our object is to summarize the way in which a simultaneous eigenfunction
ΨSM having eigenvalues of S2 equal to S(S+1)~2 and Sz equal to M~ can be written
with fullest possible factorization into space and spin contributions. This is set out,
for example, in Wigner’s book, and takes the form

ΨSM =
(
fNS
)−1/2∑

k

Φλ
k (r1, r2, . . . , rN )ΘN ,S

Mk̃
(σ1,σ2, . . . ,σN ), (2.1)

where λ labels an irreducible representation of the permutation group and (for the Pauli-
allowed irreducible representation) is in one-to-one correspondence withN and S. This
we can represent formally by writing

λ ≡
[
2(N/2)−S , 12S], (2.2)

where, for example, the corresponding Young tableau has (N/2) − S rows of length
2 and 2S rows of length 1. As indicated, the functions Φ depend only on space
coordinates, while the Θ functions are solely dependent on spin coordinates. The
number of terms in the sum in equation (2.1) appears in the normalization factor and
is given by

fNS =
(2S + 1)N !(

1
2N + S + 1

)
!
(
N
2 − S

)
!
. (2.3)
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For example, in the Be atom ground state, to be considered fully below, N = 4 and
S = 0 yields f = 2.

2.1. Permutational symmetry of Φ and Θ

We note the following permutational symmetry property of the Φ’s:

PΦλ
k =

∑
m

Dλ
mk(P )Φλ

m, (2.4)

where P is a permutation.
For the spin functions we have similarly

PΘN ,S
Mk̃

=
∑
m̃

DN ,S
m̃

(P )ΘN ,S
Mm̃

. (2.5)

The representation DN ,S is conjugate to the representation Dλ:

DN ,S
m̃k̃

= εPD
λ
mk(P ), (2.6)

where εP is the parity of P .
In addition to these important permutational symmetry properties, it is noteworthy

that if Dλ is an irreducible representation, then so is any unitary transformation of
it. Thus different choices are possible for Dλ with fixed λ, but we stress that the
many-electron wave function Ψ in equation (2.1) is unique, regardless of the unitary
transformation.

It must also be recognized that in equation (2.1) the functions Φ and Θ are also
orthonormal and satisfy 〈

Φλ
k

∣∣Φλ
l

〉
= δkl (2.7)

and 〈
ΘN ,S
Mk

∣∣ΘN ,S
Ml

〉
= δkl. (2.8)

We turn immediately to use this form (2.1) which exhibits the fullest possible
factorization of Ψ into space and spin parts to construct the low-order spinless density
matrices Γ and γ as defined by Löwdin [10]: see also McWeeny [12,13], Davidson [2]
and Gould et al. [4].

3. First- and second-order spinless density matrices

In this section, we use the eigenfunction ΨSM of S2 and Sz to construct the
spinless density matrices. In particular, we can write almost immediately for the
spinless second-order density matrix Γ the result
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(3.1)
Γ
(
r1, r2; r′1, r′2

)
=

(
N

2

)(
fNS
)−1

×
∑
k1,k2

∫
Φλ
k2

(r1, r2, r3, . . . , rN )Φλ
k2

(
r′1, r′2, r3, . . . , rN

)
dr3 . . . drN

×
〈
ΘN ,S
M ,k1

∣∣ΘN ,S
M ,k2

〉
=
∑
k

Γk
(
r1, r2; r′1, r′2

)
. (3.2)

We must note now a number of points concerning the sum over k in the last part
of equation (3.1). In general there are fNS terms in the sum, where fNS is given in
equation (2.3). It is next important to recognize that each of these terms has equal
weight in the precise sense that∫

Γk(r1, r2; r1, r2) dr1 dr2

is independent of the label k. Furthermore, as already pointed out, one can pick a
unitary transformation in a variety of different ways. Our choice will be such that
different k’s correspond to different coupling paths for the spins (e.g., in the Young
tableau mentioned above). We will select a coupling path that couples the first two
electrons to symmetry λ12 and the remaining N–2 particles (i.e., 3 to N ) to symmetry
λ3→N , with corresponding k indices k3→N .

Returning to the last step in equation (3.1), we emphasize that the Γk’s only differ
if the pair λ12, λ3→N are different, i.e., are independent of k3→N . Then in the sum
over k appearing in equation (3.1), the sum over k3→N can be carried out, the number
of equivalent terms being just fN−2

S in the notation of equation (2.3).
To make the above points quite explicit, table 1 has been constructed. From this

table, it follows that for the example when S = 0, the independent terms that remain
in the sum are just two in number. If, on the other hand, S = 1/2 , there are three
terms, while if S > 1 then there are four. These different terms are characterized by

Table 1
Illustrating correspondence between symmetry λ and spin S for different cou-

pling paths relevant for second-order spinless density matrix Γ.

λ λ12 λ3→N

S = 0 S12 = 0 S3→N = 0
S12 = 1 S3→N = 1

S = 1/2 S12 = 0 S3→N = 1/2
S12 = 1 S3→N = 1/2
S12 = 1 S3→N = 3/2

S > 1 S12 = 0 S3→N = S
S12 = 1 S3→N = S − 1
S12 = 1 S3→N = S
S12 = 1 S3→N = S + 1



D.J. Klein et al. / Spinless density matrices 265

Table 2
Completely analogous to table 1 but for spinless first-order

density matrix γ.

S S1 S2→N

0 1/2 1/2
> 1/2 1/2 S − 1/2

1/2 S + 1/2

different permutational symmetries. These symmetries are either symmetric (S12 = 0
in table 1) or antisymmetric (S12 = 0) in electrons 1 and 2.

Turning to the first-order spinless density matrix γ(r1, r′1) the above second-order
density matrices have immediate implications for this object. This then allows the
construction of table 2.

4. Example of Be atom in ground state: N = 4, S = 0

Let us turn to an example of the application of the somewhat formal theory
presented above to the ground state of the Be atom. For this case, N = 4 and S = 0
and hence from equation (2.3) fSN = 2. Labelling the two space components by k1

and k2, one has for the many-electron ground state (2.1) in this atom the result

Ψ00 = Φλ
0k1

Θ0
0k1

+ Φλ
0k2

Θ0
0k2
. (4.1)

But from the summary in section 2, the spin functions labelled by different k are
orthonormal when integrated over the spin coordinates of the four electrons. As dis-
cussed in section 3 above for the case S = 0 there remain two distinct terms in the
spinless density matrix, one being symmetric and the other antisymmetric, in the sense
explained in some detail above. Let us next turn to compare this situation for the
interacting wave function derived from equation (2.1) with the spinless density matrix
obtained from a single Slater determinant.

4.1. Single-determinant approximation to Be atom ground-state

For the ground configuration (1s)2(2s)2, Holas et al. [7], following the work of
Dawson and March [3], have constructed explicitly the first-order spinless density
matrix γ(r1, r′1) for Be, in terms of the density amplitude {ρ(r)}1/2 and the phase θ(r).
The result is

γ
(
r1, r′1

)
= ρ(r1)1/2ρ

(
r′1
)1/2

cos
{
θ(r1)− θ

(
r′1
)}
. (4.2)

Given the density ρ(r), the phase θ(r) can be derived by solution of a non-linear
pendulum-like eigenequation. But it is well known for the case of a single Slater
determinant that the first-order matrix determines all the higher-order density matrices.
In the present context, this means that the second-order matrix Γ can be written in
terms of γ in equation (4.2).
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As set out, for example, in the book by a Parr and Yang [14] the result is, with
r′2 = r2,

2Γ
(
r1, r′1; r2, r2

)
= γ

(
r1, r′1

)
γ(r2, r2)− 1

2
γ(r1, r2)γ

(
r2, r′1

)
. (4.3)

Substituting the form (4.2) into equation (4.3), one finds after a little manipulation that
equation takes the form

2Γ
(
r1, r′1; r2, r2

)
= ρ(r1)1/2ρ

(
r′1
)1/2

ρ(r2)
[1

2
cos
{
θ(r1)− θ(r2)

}
cos
{
θ
(
r′1
)
− θ(r2)

}
+ sin

{
θ(r1)− θ(r2)

}
sin
{
θ
(
r′1
)
− θ(r2)

}]
. (4.4)

The pair function, 2Γ(r1, r2), is the diagonal form of equation (4.4), yielding the result

2Γ(r1, r2) = ρ(r1)ρ(r2)
[
1− 1

2
cos2 {θ(r1)− θ(r2)

}]
. (4.5)

Though this result (4.5) follows for the Be atom ground state described in the approx-
imation of a single Slater determinant, as constructed this wave function is indeed an
eigenfunction of S2 and Sz with S = 0. Therefore it must be possible to write the
compact form (4.5) for the pair function in the alternative decomposition correspond-
ing to equation (3.1). This decomposition is carried out explicitly in appendix 1, and
yields

2Γ(r1, r2) =
3
4
ρ(r1)ρ(r2)

[
1−cos2 {θ(r1)−θ(r2)

}
+

1
3

(
1+cos2 {θ(r1)−θ(r2)

})]
. (4.6)

Invoking the idempotency [4,7] of the first-order density matrix γ in equation (4.2),
it is straightforward to show that the two components separated inside the square
brackets on equation (4.6) do indeed make equal contributions to the integral of the
pair function over r1 and r2.

The form (4.6) therefore constitutes a specific example illustrating, in the approx-
imation of a single determinant, the properties of the spinless second-order density
matrix that must follow from its being derived from a simultaneous eigenfunction of
S2 and Sz.

5. Summary and future directions

The main achievement of the present study is to demonstrate the compactness of
the spinless second-order density matrix Γ which follows after its construction from the
factorizable form (2.1) which is itself an eigenfunction of S2 and Sz. It turns out that,
in spite of the number of electrons N appearing in the result for fNS in equation (2.2),
in fact the sum collapses into simply two terms for S = 0, a maximum of three terms
for S = 1/2, and four terms for S > 1. The individual terms that remain in the sum
are characterized by their permutational symmetry properties.
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The specific example of the ground-state of the Be atom, with S = 0, is consid-
ered in some detail in section 4 and in appendix 1. For the approximation of a single
determinant, itself an eigenfunction of S2 and Sz , the spinless pair function Γ(r1, r2)
takes the compact form (4.5) in terms of the density amplitude {ρ(r)}1/2 and the phase
θ(r). But this is not in the form of the sum of two terms with equal weights that occur
in the theory starting out from equation (2.1). Therefore, in appendix 1, it is shown
how to rearrange equation (4.5) for the electron pair function in the ground-state of Be
into the two terms with definite permutational symmetry and with equal weights, the
desired results for the two contributions to the pair function being exhibited explicitly
in equation (4.6).

Of course, to determine precisely the two spatial terms for Be will require solu-
tion of Schrödinger’s equation for exact results to be obtained. But at least one has
inequalities to guide one, in the search for correlated, but still approximate, forms of
the low-order density matrices. Thus the idempotent matrix condition satisfied by the
single determinant form (4.2) of the first-order density matrix must be replaced in the
fully interacting case γ2 < γ, or written out fully in coordinate representation:

γ
(
r1, r′1

)
>

∫
γ(r1, r2)γ

(
r2, r′1

)
dr2. (5.1)

Any N -representable first-order matrix satisfying equation (5.1) can in fact be written
in terms of the Löwdin natural orbitals χi(r) and corresponding occupation numbers
ni as

γ
(
r1, r′1

)
=
∑
all i

niχi(r1)χ∗i
(
r′1
)
. (5.2)

To satisfy the inequality (5.1) one must have then

0 < ni < 1, (5.3)

which reflect the so-called Pauli conditions (or alternatively a transition from the pure-
state to the mixed-state density matrices).

Naturally, specific approximations such as generalized valence bond (VB) theory
can be introduced to make quite concrete the summation (2.1) for the eigenfunction of
S2 and Sz. With some additional simplifications (e.g., strong orthogonality constraints),
we have considered such a VB approach elsewhere [8].

Two final comments are called for. First, in appendix 2, we have set out the
example of the ground state of the Li atom, with an unpaired 2s electron spin. Secondly,
we return to the point concerning N -representability, discussed in the introduction. If
the considerations of the present paper are followed, in constructing the exchange-
correlation potential vxc(r) from both the exact theory of Holas and March [5] in terms
of Γ and γ, then no violation of N -representability can occur. Needless to say, to
obtain vxc[ρ], one would need to express as explicit functionals of ρ(r), which remains
a truly formidable many-electron problem.
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Appendix 1. Reduction of spinless second-order density matrix to independent
electron form for ground-state of Be atom (N = 4, S = 0)

The wave functions Φλ
k in equation (3.1) for the case of the beryllium atom,

which arise from two doubly occupied orbitals, may be explicitly constructed. The or-
thonormal orbitals ψ1 and ψ2 are abbreviated to a and b and the particle coordinates are
associated to position, so that, for example, aabb represents ψ1(r1)ψ1(r2)ψ2(r2)ψ2(r4).
The two Φλ

k related to two Young tableaux associated to the same Young diagram of
λ = [22] are [15], apart from normalization factors

Φλ
− ∼ {1− (12)}{1 − (34)}{1− (13)}{1− (24)}aabb (A1.1)

and

Φλ
+ ∼ {1 + (12)}{1 + (34)}{1 − (13)}{1− (24)}aabb, (A1.2)

where the various (ij) are permutations interchanging indices i and j. Carrying out
the application of these permutations and now including normalization one obtains

Φλ
− = (1/2) (ab− ba)(ab− ba) (A1.3)

and

Φλ
+ = 1/(2

√
3)
{

2(aabb + bbaa) − (ab + ba ab + ba)
}
. (A1.4)

The associated + and − components of the spinless second-order reduced density
matrices are then

Γ− =
1
2

(
4
2

)
tr34
∣∣Φλ
−
〉〈

Φλ
−
∣∣ (A1.5)

and

Γ+ =
1
2

(
4
2

)
tr34
∣∣Φλ

+〉〈Φλ
+

∣∣, (A1.6)

where the ‘partial traces’ here entail integration over the particle coordinates 3 and 4.
Carrying out these operations gives

Γ− = (3/2)|ab − ba〉〈ab − ba| (A1.7)

and

Γ+ = |aa〉〈aa| + |bb〉〈bb| + (1/2)|ab + ba〉〈ab + ba|. (A1.8)
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As indicated in table 2, the components of the spinless first-order density matrix are
the same for an overall singlet and this may be checked here. That is γ− = γ+ and

γ = γ− + γ+ = 2
(
|a〉〈a| + |b〉〈b|

)
. (A1.9)

The electronic pair function may now be obtained from Γ− and Γ+ as

Γ(1, 2) = Γ−(1, 2; 1, 2) + Γ+(1, 2; 1, 2) = (3/2)
{

a(1)b(2) − b(1)a(2)
}2

+
{

a(1)a(2)
}2

+
{

b(1)b(2)
}2

+ (1/2)
{

a(1)b(2) + b(1)a(2)
}2

(A1.10)

and this leads back to equation (4.6).
Though the above is specific to the case N = 4, S = 0, there are points to

be stressed for the singlet case and for general N . In the notation of equation (3.1),
the two different Γk terms are characterized by their permutational symmetry as in
the above example. In particular, Γ−(1, 2; 1′, 2′) is antisymmetrical in 1 and 2 and
separately is antisymmetrical in 1′ and 2′. In contrast, Γ+ is symmetrical in 1 and 2
and in 1′ and 2′. Finally, for the first-order spinless density matrix in the singlet case
discussed in this appendix, the quantity γk defined from equation (3.1) as

γk(1, 1′) =
2

N − 1

∫
Γk(1, 2; 1′, 2) d2 (A1.11)

is in fact independent of k for arbitrary N and S = 0, for a general wave function of
the form (3.1).

Appendix 2. Single determinant and general space-spin factorization for Li
atom (N = 3, S = 1/2)

In this appendix we shall make close contact between the single determinant wave
function for the (1s)22s ground state of the Li atom and the general expansion (2.1).
Starting from the latter, we note that N = 3 and S = 1/2 for the ground state above
lead from equation (2.3) to

f 3
1/2 = 2. (A2.1)

Thus the general factorization in equation (2.1) can be classified by two labels k, say
k1 and k2, to yield for S = 1/2 and the case M = 1/2, to be quite explicit

Ψ1/2,1/2 = Φλ
k1

Θ3,1/2

1/2,k̃1
+ Φλ

k2
Θ3,1/2

1/2,k̃2
. (A2.2)

Evidently we can construct the unnormalized second-order density matrix Γσ as

Γσ
(
r1, r2; r′1, r′2;σ1,σ2;σ′1,σ′2

)
=

∫
Ψ∗(r1, r2, r3;σ1,σ2,σ3)Ψ

(
r′1, r′2, r3;σ′1,σ′2,σ3

)
dr3 dσ3. (A2.3)
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Inserting the form (A2.2) into equation (A2.3) and using the orthonormality of the spin
functions yields for the spinless matrix γ(r1, r′1) the result

γ
(
r1, r′1

)
=

∫
Φ∗1/2,k1

(r1, r2, r3)Φ1/2,k1

(
r′1, r2, r3

)
dr2 dr3

+

∫
Φ∗1/2,k2

(r1, r2, r3)Φ1/2,k2

(
r′1, r2, r3

)
dr2 dr3. (A2.4)

These forms (A2.3) and (A2.4) will next be compared with the single determinant
results.

Single determinant approximation

Let us denote the two 1s spin-orbitals by φ(r)α and φ(r)β. We take the unpaired
2s electron to be in spin state α, with corresponding orthogonal spin-orbital χ(r)α.
Then the single determinantal wave function is

1

(3!)1/2

∣∣∣∣∣∣∣
φ(1)α(1) φ(2)α(2) φ(3)α(3)

φ(1)β(1) φ(2)β(2) φ(3)β(3)

χ(1)α(1) χ(2)α(2) χ(3)α(3)

∣∣∣∣∣∣∣ . (A2.5)

Following the notation of appendix 1, the two components Φλ
− and Φλ

+ are given
explicitly by

Φλ
− ∼ {1− (12)}{1 − (13)}aab (A2.6)

and

Φλ
+ ∼ {1 + (12)}{1− (13)}aab. (A2.7)

The spin functions can also be written down, their forms being

ΘN ,S
1/2− ∼ {1− (12)}{1− (13)}ααβ (A2.8)

and

ΘN ,S
1/2+ ∼ {1 + (12)}{1− (13)}ααβ. (A2.9)

The correspondence between space and spin functions in equations (A2.6)–(A2.9) are
according to k1 = −, k̃1 = + and k2 = +, k̃2 = −. The above determinant (A2.5)
can now be constructed as

Ψ1/2,1/2 = (1/
√

2)
{

Φλ
−ΘN ,S

1/2+ + Φλ
+ΘN ,S

1/2−
}
. (A2.10)

Developing the forms (A2.6) and (A2.7) one readily obtains

Φλ
−= (1/

√
2) {1− (12)}{aab − baa}

= (1/
√

2) {−baa + aba} (A2.11)
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and

Φλ
+ = (1/

√
6) {1 + (12)}{aab − baa}

= (1/
√

6) {2aab − baa− aba}. (A2.12)

Forming the spinless second-order density matrix from equation (A2.3), and expressing
it in terms of components Γ+ and Γ− one obtains these as

Γ+ = (1/2)

(
N

2

)
tr3
∣∣Φλ

+

〉〈
Φλ

+

∣∣
= (1/4)

{
4|aa〉〈aa| + |ab + ba〉〈ab + ba|

}
(A2.13)

and

Γ−= (1/2)

(
N

2

)
tr3
∣∣Φλ
−
〉〈

Φλ
−
∣∣

= (3/4)
{
|ab− ba〉〈ab − ba|

}
. (A2.14)

Explicitly the pair function is then given by

Γ(1, 2) = Γ+(1, 2; 1, 2) + Γ−(1, 2; 1, 2)

= 2
{

a(1)a(2)
}2

+ (1/2)
{

a(1)b(2) + b(1)a(2)
}2

+ (3/2)
{

a(1)b(2) − b(1)a(2)
}
. (A2.15)

To conclude the discussion of this S = 1/2 case, we note
(i) Li is exceptional in the context of table 1 which would predict three different

Γk’s. The reason is that S3→N cannot be 3/2 when N = 3 as in Li;
(ii) For general N and S = 1/2, the general first-order density matrix is a

superposition of just two γ’s.
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